
Java Collections Framework

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Tutorial tips 2

2. Collections Framework 3

3. Collection interfaces and classes 5

4. Special collection implementations 22

5. Historical collection classes 25

6. Algorithm support 28

7. Usage issues 32

8. Alternative collections 35

9. Exercises 36

10. Wrapup 44

Java Collections Framework Page 1

Section 1. Tutorial tips

Should I take this tutorial?
This tutorial takes you on an extended tour of the Java Collections Framework. The tutorial
starts with a few simple programming examples for beginners and experts alike, to get
started with the Collections Framework quickly. The tutorial continues with a discussion of
sets and maps, their properties, and how their mathematical definition differs from the Set,
Map, and Collection definitions within the Collections Framework. A section on the history
of Java Collections Framework clears up some of the confusion around the proliferation of
set- and map-like classes. This tutorial includes a thorough presentation of all the interfaces
and their implementation classes in the Collections Framework. The tutorial explores the
algorithm support for the collections, as well as working with collections in a thread-safe and
read-only manner. In addition, the tutorial includes a discussion of using a subset of the
Collections Framework with JDK 1.1. The tutorial concludes with an introduction of JGL, a
widely used algorithm and data structure library from ObjectSpace that predates the Java
Collections Framework.

Concepts

At the end of this tutorial you will know the following:

* The mathematical meaning of set, map, and collection
* The six key interfaces of the Collections Framework

Objectives

By the end of this tutorial, you will know how to do the following:

* Use the concrete collection implementations
* Apply sorting and searching through collections
* Use read-only and thread-safe collections

copyright 1996-2000 Magelang Institute dba jGuru

Contact
jGuru has been dedicated to promoting the growth of the Java technology community
through evangelism, education, and software since 1995. You can find out more about their
activities, including their huge collection of FAQs at jGuru.com . To send feedback to jGuru
about this tutorial, send mail to producer@jguru.com .

Course author: John Zukowski does strategic Java consulting for JZ Ventures, Inc. . His
latest book is "Java Collections" (Apress, May 2001).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 2

http://www.jguru.com
http://www.jguru.com
mailto:producer@jguru.com
http://www.jzventures.com
http://www.jzventures.com
http://www.jzventures.com
http://www.apress.com/catalog/book/1893115925/
http://www.apress.com/catalog/book/1893115925/

Section 2. Collections Framework

Introduction
This tutorial takes you on an extended tour of the Collections Framework, first introduced
with the Java 2 platform, Standard Edition, version 1.2. The Collections Framework provides
a well-designed set of interfaces and classes for storing and manipulating groups of data as
a single unit, a collection. The framework provides a convenient API to many of the abstract
data types familiar from computer science data structure curriculum: maps, sets, lists, trees,
arrays, hashtables, and other collections. Because of their object-oriented design, the Java
classes in the Collections Framework encapsulate both the data structures and the
algorithms associated with these abstractions. The framework provides a standard
programming interface to many of the most common abstractions, without burdening the
programmer with too many procedures and interfaces. The operations supported by the
collections framework nevertheless permit the programmer to easily define higher-level data
abstractions, such as stacks, queues, and thread-safe collections.

One thing worth noting early on is that while the framework is included with the Java 2
platform, a subset form is available for use with Java 1.1 run-time environments. The
framework subset is discussed in Working with the Collections Framework support in JDK
1.1 on page 33.

Before diving into the Collections Framework, it helps to understand some of the terminology
and set theory involved when working with the framework.

Mathematical background
In common usage, a collection is the same as the intuitive, mathematical concept of a set. A
set is just a group of unique items, meaning that the group contains no duplicates. The
Collections Framework, in fact, includes a Set interface, and a number of concrete Set
classes. But the formal notion of a set predates Java technology by a century, when the
British mathematician George Boole defined it in formal logic. Most people learned some set
theory in elementary school when introduced to "set intersection" and "set union" through the
familiar Venn Diagrams:

Some real-world examples of sets include the following:

* The set of uppercase letters 'A' through 'Z'
* The set of non-negative integers {0, 1, 2 ...}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 3

* The set of reserved Java programming language keywords {'import', 'class', 'public',
'protected'...}

* A set of people (friends, employees, clients, ...)
* The set of records returned by a database query
* The set of Component objects in a Container
* The set of all pairs
* The empty set {}

Sets have the following basic properties:

* They contains only one instance of each item
* They may be finite or infinite
* They can define abstract concepts

Sets are fundamental to logic, mathematics, and computer science, but also practical in
everyday applications in business and systems. The idea of a "connection pool" is a set of
open connections to a database server. Web servers have to manage sets of clients and
connections. File descriptors provide another example of a set in the operating system.

A map is a special kind of set. It is a set of pairs, each pair representing a one-directional
mapping from one element to another. Some examples of maps are:

* The map of IP addresses to domain names (DNS)
* A map from keys to database records
* A dictionary (words mapped to meanings)
* The conversion from base 2 to base 10

Like sets, the idea behind a map is much older than the Java programming language, older
even than computer science. Sets and maps are important tools in mathematics and their
properties are well understood. People also long recognized the usefulness of solving
programming problems with sets and maps. A language called SETL (Set Language)
invented in 1969 included sets as one of its only primitive data types (SETL also included
garbage collection -- not widely accepted until Java technology was developed in the
1990s). Although sets and maps appear in many languages including C++, the Collections
Framework is perhaps the best designed set and map package yet written for a popular
language. (Users of C++ Standard Template Library (STL) and Smalltalk's collection
hierarchy might argue that last point.)

Also because they are sets, maps can be finite or infinite. An example of an infinite map is
the conversion from base 2 to base 10. Unfortunately, the Collections Framework does not
support infinite maps -- sometimes a mathematical function, formula, or algorithm is
preferred. But when a problem can be solved with a finite map, the Collections Framework
provides the Java programmer with a useful API.

Because the Collections Framework has formal definitions for the classes Set,
, and Map, you'll notice the lower case words set, collection, and map to distinguish the
implementation from the concept.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 4

Section 3. Collection interfaces and classes

Introduction
Now that you have some set theory under your belt, you should be able to understand the
Collections Framework more easily. The Collections Framework is made up of a set of
interfaces for working with groups of objects. The different interfaces describe the different
types of groups. For the most part, once you understand the interfaces, you understand the
framework. While you always need to create specific implementations of the interfaces,
access to the actual collection should be restricted to the use of the interface methods, thus
allowing you to change the underlying data structure, without altering the rest of your code.
The following diagrams shows the framework interface hierarchy.

One might think that Map would extend Collection. In mathematics, a map is just a
collection of pairs. In the Collections Framework, however, the interfaces Map and
Collection are distinct with no lineage in the hierarchy. The reasons for this distinction
have to do with the ways that Set and Map are used in the Java libraries. The typical
application of a Map is to provide access to values stored by keys. The set of collection
operations are all there, but you work with a key-value pair instead of an isolated element.
Map is therefore designed to support the basic operations of get() and put() , which are
not required by Set. Moreover, there are methods that return Set views of Map objects:

Set set = aMap.keySet();

When designing software with the Collections Framework, it is useful to remember the
following hierarchical relationships of the four basic interfaces of the framework:

* The Collection interface is a group of objects, with duplicates allowed.
* The Set interface extends Collection but forbids duplicates.
* The List interface extends Collection, allows duplicates, and introduces positional

indexing.
* The Map interface extends neither Set nor Collection.

Moving on to the framework implementations, the concrete collection classes follow a
naming convention, combining the underlying data structure with the framework interface.
The following table shows the six collection implementations introduced with the Java 2
framework, in addition to the four historical collection classes. For information on how the
historical collection classes changed, like how Hashtable was reworked into the framework,
see the Historical collection classes on page 25.

Interface Implementation Historical
Set HashSet

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 5

http://java.sun.com/products/jdk/1.2/docs/api/java/util/Map.html#get(java.lang.Object)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Map.html#put(java.lang.Object, java.lang.Object)

TreeSet

List ArrayList Vector

LinkedList Stack

Map HashMap Hashtable

TreeMap Properties

There are no implementations of the Collection interface. The historical collection classes
are called such because they have been around since the 1.0 release of the Java class
libraries.

If you are moving from the historical collection classes to the new framework classes, one of
the primary differences is that all operations are unsynchronized with the new classes. While
you can add synchronization to the new classes, you cannot remove it from the old.

Collection interface
The Collection interface is used to represent any group of objects, or elements. You use
the interface when you wish to work with a group of elements in as general a manner as
possible. Here is a list of the public methods of Collection in Unified Modeling Language
(UML) notation.

The interface supports basic operations like adding and removing. When you try to remove
an element, only a single instance of the element in the collection is removed, if present.

* boolean add(Object element)
* boolean remove(Object element)

The Collection interface also supports query operations:

* int size()
* boolean isEmpty()
* boolean contains(Object element)
* Iterator iterator()

Iterator interface

The iterator() method of the Collection interface returns an Iterator. An
Iterator is similar to the Enumeration interface, which you may already be familiar with,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 6

http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collection.html#iterator()

and will be described in Enumeration interface on page 26. With the Iterator interface
methods, you can traverse a collection from start to finish and safely remove elements from
the underlying Collection:

The remove() method is optionally supported by the underlying collection. When called,
and supported, the element returned by the last next() call is removed. To demonstrate,
the following code shows the use of the Iterator interface for a general Collection:

Collection collection = ...;
Iterator iterator = collection.iterator();
while (iterator.hasNext()) {

Object element = iterator.next();
if (removalCheck(element)) {
iterator.remove();

}
}

Group operations

Other operations the Collection interface supports are tasks done on groups of elements
or the entire collection at once:

* boolean containsAll(Collection collection)
* boolean addAll(Collection collection)
* void clear()
* void removeAll(Collection collection)
* void retainAll(Collection collection)

The containsAll() method allows you to discover if the current collection contains all the
elements of another collection, a subset. The remaining methods are optional, in that a
specific collection might not support the altering of the collection. The addAll() method
ensures all elements from another collection are added to the current collection, usually a
union. The clear() method removes all elements from the current collection. The
removeAll() method is like clear() but only removes a subset of elements. The
retainAll() method is similar to the removeAll() method but does what might be
perceived as the opposite: it removes from the current collection those elements not in the
other collection, an intersection.

The remaining two interface methods, which convert a Collection to an array, will be
discussed in Converting from new collections to historical collections on page 32.

AbstractCollection class

The AbstractCollection class provides the basis for the concrete collections framework
classes. While you are free to implement all the methods of the Collection interface
yourself, the AbstractCollection class provides implementations for all the methods,
except for the iterator() and size() methods, which are implemented in the appropriate
subclass. Optional methods like add() will throw an exception if the subclass doesn't

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 7

http://java.sun.com/products/jdk/1.2/docs/api/java/util/Iterator.html#remove()
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Iterator.html#next()
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collection.html#containsAll(java.util.Collection)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collection.html#addAll(java.util.Collection)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collection.html#clear()
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collection.html#removeAll(java.util.Collection)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collection.html#clear()
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collection.html#retainAll(java.util.Collection)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collection.html#removeAll(java.util.Collection)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/AbstractCollection.html#add(java.lang.Object)

override the behavior.

Collections Framework design concerns

In the creation of the Collections Framework, the Sun development team needed to provide
flexible interfaces that manipulated groups of elements. To keep the design simple, instead
of providing separate interfaces for optional capabilities, the interfaces define all the methods
an implementation class may provide. However, some of the interface methods are optional.
Because an interface implementation must provide implementations for all the interface
methods, there needed to be a way for a caller to know if an optional method is not
supported. The manner the framework development team chose to signal callers when an
optional method is called was to throw an UnsupportedOperationException. If in the
course of using a collection an UnsupportedOperationException is thrown, then the
operation failed because it is not supported. To avoid having to place all collection operations
within a try-catch block, the UnsupportedOperationException class is an extension
of the RuntimeException class.

In addition to handling optional operations with a run-time exception, the iterators for the
concrete collection implementations are fail-fast . That means that if you are using an
Iterator to traverse a collection while the underlying collection is being modified by
another thread, then the Iterator fails immediately by throwing a
ConcurrentModificationException (another RuntimeException). That means the
next time an Iterator method is called, and the underlying collection has been modified,
the ConcurrentModificationException exception gets thrown.

Set interface
The Set interface extends the Collection interface and, by definition, forbids duplicates
within the collection. All the original methods are present and no new methods are
introduced. The concrete Set implementation classes rely on the equals() method of the
object added to check for equality.

HashSet and TreeSet classes

The Collections Framework provides two general-purpose implementations of the Set
interface: HashSet and TreeSet. More often than not, you will use a HashSet for storing
your duplicate-free collection. For efficiency, objects added to a HashSet need to implement
the hashCode() method in a manner that properly distributes the hash codes. While most
system classes override the default hashCode() implementation in Object, when creating

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 8

http://java.sun.com/products/jdk/1.2/docs/api/java/util/Set.html#equals(java.lang.Object)
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/Object.html#hashCode()

your own classes to add to a HashSet remember to override hashCode(). The TreeSet
implementation is useful when you need to extract elements from a collection in a sorted
manner. In order to work properly, elements added to a TreeSet must be sortable. The
Collections Framework adds support for Comparable elements and will be covered in detail
in "Comparable interface" in Sorting on page 17. For now, just assume a tree knows how to
keep elements of the java.lang wrapper classes sorted. It is generally faster to add
elements to a HashSet, then convert the collection to a TreeSet for sorted traversal.

To optimize HashSet space usage, you can tune the initial capacity and load factor. The
TreeSet has no tuning options, as the tree is always balanced, ensuring log(n)
performance for insertions, deletions, and queries.

Both HashSet and TreeSet implement the Cloneable interface.

Set usage example

To demonstrate the use of the concrete Set classes, the following program creates a
HashSet and adds a group of names, including one name twice. The program then prints
out the list of names in the set, demonstrating the duplicate name isn't present. Next, the
program treats the set as a TreeSet and displays the list sorted.

import java.util.*;

public class SetExample {
public static void main(String args[]) {
Set set = new HashSet();
set.add("Bernadine");
set.add("Elizabeth");
set.add("Gene");
set.add("Elizabeth");
set.add("Clara");
System.out.println(set);
Set sortedSet = new TreeSet(set);
System.out.println(sortedSet);

}
}

Running the program produces the following output. Notice that the duplicate entry is only
present once, and the second list output is sorted alphabetically.

[Gene, Clara, Bernadine, Elizabeth]
[Bernadine, Clara, Elizabeth, Gene]

AbstractSet class

The AbstractSet class overrides the equals() and hashCode() methods to ensure
two equal sets return the same hash code. Two sets are equal if they are the same size and
contain the same elements. By definition, the hash code for a set is the sum of the hash
codes for the elements of the set. Thus, no matter what the internal ordering of the sets, two
equal sets will report the same hash code.

Exercises

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 9

http://java.sun.com/products/jdk/1.2/docs/api/java/util/AbstractSet.html#equals(java.lang.Object)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/AbstractSet.html#hashCode()

* Exercise 1. How to use a HashSet for a sparse bit set on page 36
* Exercise 2. How to use a TreeSet to provide a sorted JList on page 38

List interface
The List interface extends the Collection interface to define an ordered collection,
permitting duplicates. The interface adds position-oriented operations, as well as the ability
to work with just a part of the list.

The position-oriented operations include the ability to insert an element or Collection, get
an element, as well as remove or change an element. Searching for an element in a List
can be started from the beginning or end and will report the position of the element, if found.

* void add(int index, Object element)
* boolean addAll(int index, Collection collection)
* Object get(int index)
* int indexOf(Object element)
* int lastIndexOf(Object element)
* Object remove(int index)
* Object set(int index, Object element)

The List interface also provides for working with a subset of the collection, as well as
iterating through the entire list in a position-friendly manner:

* ListIterator listIterator()
* ListIterator listIterator(int startIndex)
* List subList(int fromIndex, int toIndex)

In working with subList() , it is important to mention that the element at fromIndex is in
the sublist, but the element at toIndex is not. This loosely maps to the following for-loop
test cases:

for (int i=fromIndex; i<toIndex; i++) {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 10

http://java.sun.com/products/jdk/1.2/docs/api/java/util/List.html#subList(int, int)

// process element at position i
}

In addition, it should be mentioned that changes to the sublist (like add(), remove(), and
set() calls) have an effect on the underlying List.

ListIterator interface

The ListIterator interface extends the Iterator interface to support bi-directional
access, as well as adding or changing elements in the underlying collection.

The following source code demonstrates looping backwards through a list. Notice that the
ListIterator is originally positioned beyond the end of the list (list.size()), as the
index of the first element is 0.

List list = ...;
ListIterator iterator = list.listIterator(list.size());
while (iterator.hasPrevious()) {

Object element = iterator.previous();
// Process element

}

Normally, one doesn't use a ListIterator to alternate between going forward and
backward in one iteration through the elements of a collection. While technically possible,
calling next() immediately after previous() results in the same element being returned.
The same thing happens when you reverse the order of the calls to next() and previous().

The add() operation requires a little bit of explanation also. Adding an element results in the
new element being added immediately prior to the implicit cursor. Thus, calling previous()
after adding an element would return the new element and calling next() would have no
effect, returning what would have been the next element prior to the add operation.

ArrayList and LinkedList classes

There are two general-purpose List implementations in the Collections Framework:
ArrayList and LinkedList. Which of the two List implementations you use depends on
your specific needs. If you need to support random access, without inserting or removing
elements from any place other than the end, then ArrayList offers the optimal collection.
If, however, you need to frequently add and remove elements from the middle of the list and
only access the list elements sequentially, then LinkedList offers the better
implementation.

Both ArrayList and LinkedList implement the Cloneable interface. In addition,
LinkedList adds several methods for working with the elements at the ends of the list

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 11

(only the new methods are shown in the following diagram):

By using these new methods, you can easily treat the LinkedList as a stack, queue, or
other end-oriented data structure.

LinkedList queue = ...;
queue.addFirst(element);
Object object = queue.removeLast();

LinkedList stack = ...;
stack.addFirst(element);
Object object = stack.removeFirst();

The Vector and Stack classes are historical implementations of the List interface. They
will be discussed in Vector and Stack classes on page 25.

List usage example

The following program demonstrates the use of the concrete List classes. The first part
creates a List backed by an ArrayList. After filling the list, specific entries are retrieved.
The LinkedList part of the example treats the LinkedList as a queue, adding things at
the beginning of the queue and removing them from the end.

import java.util.*;

public class ListExample {
public static void main(String args[]) {
List list = new ArrayList();
list.add("Bernadine");
list.add("Elizabeth");
list.add("Gene");
list.add("Elizabeth");
list.add("Clara");
System.out.println(list);
System.out.println("2: " + list.get(2));
System.out.println("0: " + list.get(0));
LinkedList queue = new LinkedList();
queue.addFirst("Bernadine");
queue.addFirst("Elizabeth");
queue.addFirst("Gene");
queue.addFirst("Elizabeth");
queue.addFirst("Clara");
System.out.println(queue);
queue.removeLast();
queue.removeLast();
System.out.println(queue);

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 12

Running the program produces the following output. Notice that unlike Set, List permits
duplicates.

[Bernadine, Elizabeth, Gene, Elizabeth, Clara]
2: Gene
0: Bernadine
[Clara, Elizabeth, Gene, Elizabeth, Bernadine]
[Clara, Elizabeth, Gene]

AbstractList and AbstractSequentialList classes

There are two abstract List implementations classes: AbstractList and
AbstractSequentialList. Like the AbstractSet class, they override the equals()
and hashCode() methods to ensure two equal collections return the same hash code. Two
sets are equal if they are the same size and contain the same elements in the same order.
The hashCode() implementation is specified in the List interface definition and
implemented here.

Besides the equals() and hashCode() implementations, AbstractList and
AbstractSequentialList provide partial implementations of the remaining List
methods. They make the creation of concrete list implementations easier, for random-access
and sequential-access data sources, respectively. Which set of methods you need to define
depends on the behavior you wish to support. The following table should help you remember
which methods need to be implemented. One thing you'll never need to provide yourself is an
implementation of the Iterator iterator() method.

AbstractList AbstractSequentialList

unmodifiable Object get(int index)
int size()

ListIterator listIterator(int index)
- boolean hasNext()
- Object next()
- int nextIndex()
- boolean hasPrevious()
- Object previous()
- int previousIndex()
int size()

modifiable Object get(int index)
int size()
Object set(int index, Object element)

ListIterator listIterator(int index)
- boolean hasNext()
- Object next()
- int nextIndex()
- boolean hasPrevious()
- Object previous()
- int previousIndex()
int size()
ListIterator
- set(Object element)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 13

variable-size and
modifiable

Object get(int index)
int size()
Object set(int index, Object element)
add(int index, Object element)
Object remove(int index)

ListIterator listIterator(int index)
- boolean hasNext()
- Object next()
- int nextIndex()
- boolean hasPrevious()
- Object previous()
- int previousIndex()
int size()
ListIterator
- set(Object element)
ListIterator
- add(Object element)
- remove()

As the Collection interface documentation states, you should also provide two
constructors, a no-argument one and one that accepts another Collection.

Exercise
* Exercise 3. How to use an ArrayList with a JComboBox on page 40

Map interface
The Map interface is not an extension of the Collection interface. Instead, the interface
starts off its own interface hierarchy for maintaining key-value associations. The interface
describes a mapping from keys to values, without duplicate keys, by definition.

The interface methods can be broken down into three sets of operations: altering, querying,
and providing alternative views.

The alteration operations allow you to add and remove key-value pairs from the map. Both
the key and value can be null. However, you should not add a Map to itself as a key or
value.

* Object put(Object key, Object value)
* Object remove(Object key)
* void putAll(Map mapping)
* void clear()

The query operations allow you to check on the contents of the map:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 14

* Object get(Object key)
* boolean containsKey(Object key)
* boolean containsValue(Object value)
* int size()
* boolean isEmpty()

The last set of methods allow you to work with the group of keys or values as a collection.

* public Set keySet()
* public Collection values()
* public Set entrySet()

Because the collection of keys in a map must be unique, you get a Set back. Because the
collection of values in a map may not be unique, you get a Collection back. The last
method returns a Set of elements that implement the Map.Entry interface.

Map.Entry interface

The entrySet() method of Map returns a collection of objects that implement the
Map.Entry interface. Each object in the collection is a specific key-value pair in the
underlying Map.

Iterating through this collection, you can get the key or value, as well as change the value of
each entry. However, the set of entries becomes invalid, causing the iterator behavior to be
undefined, if the underlying Map is modified outside the setValue() method of the
Map.Entry interface.

HashMap and TreeMap classes

The Collections Framework provides two general-purpose Map implementations: HashMap
and TreeMap . As with all the concrete implementations, which implementation you use
depends on your specific needs. For inserting, deleting, and locating elements in a Map, the
HashMap offers the best alternative. If, however, you need to traverse the keys in a sorted
order, then TreeMap is your better alternative. Depending upon the size of your collection, it
may be faster to add elements to a HashMap, then convert the map to a TreeMap for sorted
key traversal. Using a HashMap requires that the class of key added have a well-defined
hashCode() implementation. With the TreeMap implementation, elements added to the
map must be sortable. We'll say more about this in Sorting on page 17.

To optimize HashMap space usage, you can tune the initial capacity and load factor. The
TreeMap has no tuning options, as the tree is always balanced.

Both HashMap and TreeMap implement the Cloneable interface.

The Hashtable and Properties classes are historical implementations of the Map
interface. They will be discussed in Dictionary, Hashtable, and Properties classes on page 26

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 15

.

Map usage example

The following program demonstrates the use of the concrete Map classes. The program
generates a frequency count of words passed from the command line. A HashMap is initially
used for data storage. Afterwards, the map is converted to a TreeMap to display the key list
sorted.

import java.util.*;

public class MapExample {
public static void main(String args[]) {
Map map = new HashMap();
Integer ONE = new Integer(1);
for (int i=0, n=args.length; i<n; i++) {
String key = args[i];
Integer frequency = (Integer)map.get(key);
if (frequency == null) {
frequency = ONE;

} else {
int value = frequency.intValue();
frequency = new Integer(value + 1);

}
map.put(key, frequency);

}
System.out.println(map);
Map sortedMap = new TreeMap(map);
System.out.println(sortedMap);

}
}

Running the program with the text from Article 3 of the Bill of Rights produces the following
output. Notice how much more useful the sorted output looks.

Unsorted:

{prescribed=1, a=1, time=2, any=1, no=1, shall=1, nor=1, peace=1,
owner=1, soldier=1, to=1, the=2, law=1, but=1, manner=1, without=1,
house=1, in=4, by=1, consent=1, war=1, quartered=1, be=2, of=3}

and sorted:

{a=1, any=1, be=2, but=1, by=1, consent=1, house=1, in=4, law=1,
manner=1, no=1, nor=1, of=3, owner=1, peace=1, prescribed=1,
quartered=1, shall=1, soldier=1, the=2, time=2, to=1, war=1,
without=1}

AbstractMap class

Similar to the other abstract collection implementations, the AbstractMap class overrides
the equals() and hashCode() methods to ensure two equal maps return the same hash
code. Two maps are equal if they are the same size, contain the same keys, and each key
maps to the same value in both maps. By definition, the hash code for a map is the sum of
the hash codes for the elements of the map, where each element is an implementation of the
Map.Entry interface. Thus, no matter what the internal ordering of the maps, two equal

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 16

http://www.law.emory.edu/FEDERAL/usconst/amend.html#art-3
http://www.law.emory.edu/FEDERAL/usconst/amend.html#art-3

maps will report the same hash code.

WeakHashMap class

A WeakHashMap is a special-purpose implementation of Map for storing only weak
references to the keys. This allows for the key-value pairs of the map to be garbage
collected when the key is no longer referenced outside of the WeakHashMap. Using
WeakHashMap is beneficial for maintaining registry-like data structures, where the
usefulness of an entry vanishes when its key is no longer reachable by any thread.

The Java 2 SDK, Standard Edition, version 1.3 adds a constructor to WeakHashMap that
accepts a Map. With version 1.2 of the Java 2 platform, the available constructors permit only
overriding the default load factor and initial capacity setting, not initializing the map from
another map (as recommended by the Map interface documentation).

Sorting
There have been many changes to the core Java libraries to add support for sorting with the
addition of the Collections Framework to the Java 2 SDK, version 1.2. Classes like String
and Integer now implement the Comparable interface to provide a natural sorting order.
For those classes without a natural order, or when you desire a different order than the
natural order, you can implement the Comparator interface to define your own.

To take advantage of the sorting capabilities, the Collections Framework provides two
interfaces that use it: SortedSet and SortedMap.

Comparable interface

The Comparable interface, in the java.lang package, is for when a class has a natural
ordering. Given a collection of objects of the same type, the interface allows you to order the
collection into that natural ordering.

The compareTo() method compares the current instance with an element passed in as an
argument. If the current instance comes before the argument in the ordering, a negative
value is returned. If the current instance comes after, then a positive value is returned.
Otherwise, zero is returned. It is not a requirement that a zero return value signifies equality
of elements. A zero return value just signifies that two objects are ordered at the same
position.

There are fourteen classes in the Java 2 SDK, version 1.2 that implement the Comparable
interface. The following table shows their natural ordering. While some classes share the
same natural ordering, you can sort only classes that are mutually comparable.

Class Ordering

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 17

BigDecimal,
BigInteger, Byte,
Double, Float,
Integer, Long, Short

Numerical

Character Numerical by Unicode value
CollationKey Locale-sensitive string

ordering
Date Chronological
File Numerical by Unicode value

of characters in
fully-qualified,
system-specific pathname

ObjectStreamField Numerical by Unicode value
of characters in name

String Numerical by Unicode value
of characters in string

The documentation for the compareTo() method of String defines the ordering
lexicographically. This means the comparison is of the numerical values of the characters in
the text, which is not necessarily alphabetically in all languages. For locale-specific ordering,
use Collator with CollationKey.

The following demonstrates the use of Collator with CollationKey to do a
locale-specific sorting:

import java.text.*;
import java.util.*;

public class CollatorTest {
public static void main(String args[]) {
Collator collator = Collator.getInstance();
CollationKey key1 = collator.getCollationKey("Tom");
CollationKey key2 = collator.getCollationKey("tom");
CollationKey key3 = collator.getCollationKey("thom");
CollationKey key4 = collator.getCollationKey("Thom");
CollationKey key5 = collator.getCollationKey("Thomas");

Set set = new TreeSet();
set.add(key1);
set.add(key2);
set.add(key3);
set.add(key4);
set.add(key5);
printCollection(set);

}
static private void printCollection(

Collection collection) {
boolean first = true;
Iterator iterator = collection.iterator();
System.out.print("[");
while (iterator.hasNext()) {
if (first) {
first = false;

} else {
System.out.print(", ");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 18

}
CollationKey key = (CollationKey)iterator.next();
System.out.print(key.getSourceString());

}
System.out.println("]");

}
}

Running the program produces the following output:

[thom, Thom, Thomas, tom, Tom]

If the names were stored directly, without using Collator, then the lowercase names would
appear apart from the uppercase names:

[Thom, Thomas, Tom, thom, tom]

Making your own class Comparable is just a matter of implementing the compareTo()
method. It usually involves relying on the natural ordering of several data members. Your
own classes should also override equals() and hashCode() to ensure two equal objects
return the same hash code.

Comparator interface

When a class wasn't designed to implement java.lang.Comparable, you can provide
your own java.util.Comparator. Providing your own Comparator also works if you
don't like the default Comparable behavior.

The return values of the compare() method of Comparator are similar to the
compareTo() method of Comparable. In this case, if the first element comes before the
second element in the ordering, a negative value is returned. If the first element comes after,
then a positive value is returned. Otherwise, zero is returned. Similar to Comparable, a zero
return value does not signify equality of elements. A zero return value just signifies that two
objects are ordered at the same position. It's up to the user of the Comparator to determine
how to deal with it. If two unequal elements compare to zero, you should first be sure that is
what you want and second document the behavior.

To demonstrate, you may find it easier to write a new Comparator that ignores case,
instead of using Collator to do a locale-specific, case-insensitive comparison. The
following is one such implementation:

class CaseInsensitiveComparator implements Comparator {
public int compare(Object element1, Object element2) {
String lowerE1 = ((String)element1).toLowerCase();
String lowerE2 = ((String)element2).toLowerCase();
return lowerE1.compareTo(lowerE2);

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 19

Because every class subclasses Object at some point, it is not a requirement that you
implement the equals() method. In fact, in most cases you won't. Do keep in mind the
equals() method checks for equality of Comparator implementations, not the objects
being compared.

The Collections class has one predefined Comparator available for reuse. Calling
Collections.reverseOrder() returns a Comparator that sorts objects that implement
the Comparable interface in reverse order.

Exercise

* Exercise 4. How to use a map to count words on page 41

SortedSet interface

The Collections Framework provides a special Set interface for maintaining elements in a
sorted order: SortedSet.

The interface provides access methods to the ends of the set as well as to subsets of the set.
When working with subsets of the list, changes to the subset are reflected in the source set.
In addition, changes to the source set are reflected in the subset. This works because
subsets are identified by elements at the end points, not indices. In addition, if the
fromElement is part of the source set, it is part of the subset. However, if the toElement is
part of the source set, it is not part of the subset. If you would like a particular to-element to
be in the subset, you must find the next element. In the case of a String, the next element
is the same string with a null character appended (string+"\0").;

The elements added to a SortedSet must either implement Comparable or you must
provide a Comparator to the constructor of its implementation class: TreeSet. (You can
implement the interface yourself. But the Collections Framework only provides one such
concrete implementation class.)

To demonstrate, the following example uses the reverse order Comparator available from
the Collections class:

Comparator comparator = Collections.reverseOrder();
Set reverseSet = new TreeSet(comparator);
reverseSet.add("Bernadine");
reverseSet.add("Elizabeth");
reverseSet.add("Gene");
reverseSet.add("Elizabeth");
reverseSet.add("Clara");
System.out.println(reverseSet);

Running the program produces the following output:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 20

[Gene, Elizabeth, Clara, Bernadine]

Because sets must hold unique items, if comparing two elements when adding an element
results in a zero return value (from either the compareTo() method of Comparable or the
compare() method of Comparator), then the new element is not added. If the elements
are equal, then that is okay. However, if they are not, then you should modify the comparison
method such that the comparison is compatible with equals().

Using the prior CaseInsensitiveComparator to demonstrate this problem, the following
creates a set with three elements: thom, Thomas, and Tom, not five elements as might be
expected.

Comparator comparator = new CaseInsensitiveComparator();
Set set = new TreeSet(comparator);
set.add("Tom");
set.add("tom");
set.add("thom");
set.add("Thom");
set.add("Thomas");

SortedMap interface

The Collections Framework provides a special Map interface for maintaining keys in a sorted
order: SortedMap.

The interface provides access methods to the ends of the map as well as to subsets of the
map. Working with a SortedMap is just like a SortedSet, except the sort is done on the
map keys. The implementation class provided by the Collections Framework is a TreeMap.

Because maps can only have one value for every key, if comparing two keys when adding a
key-value pair results in a zero return value (from either the compareTo() method of
Comparable or the compare() method of Comparator), then the value for the original key
is replaced with the new value. If the elements are equal, then that is okay. However, if they
are not, then you should modify the comparison method such that the comparison is
compatible with equals().

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 21

Section 4. Special collection implementations

Introduction
To keep the Collections Framework simple, added functionality is provided by wrapper
implementations (also known as the Decorator design pattern -- see the Design Patterns
book for more information on patterns). These wrappers delegate the collections part to the
underlying implementation class, but they add functionality on top of the collection. These
wrappers are all provided through the Collections class. The Collections class also
provides support for creating special-case collections.

Read-only collections
After you've added all the necessary elements to a collection, it may be convenient to treat
that collection as read-only, to prevent the accidental modification of the collection. To
provide this capability, the Collections class provides six factory methods, one for each of
Collection, List, Map, Set, SortedMap, and SortedSet.

* Collection unmodifiableCollection(Collection collection)
* List unmodifiableList(List list)
* Map unmodifiableMap(Map map)
* Set unmodifiableSet(Set set)
* SortedMap unmodifiableSortedMap(SortedMap map)
* SortedSet unmodifiableSortedSet(SortedSet set)

Once you've filled the collection, replace the original reference with the read-only reference.
If you don't replace the original reference, then the collection is not read-only, as you can still
use the original reference to modify the collection. The following program demonstrates the
proper way to make a collection read-only. In addition, it shows what happens when you try
to modify a read-only collection.

import java.util.*;

public class ReadOnlyExample {
public static void main(String args[]) {
Set set = new HashSet();
set.add("Bernadine");
set.add("Elizabeth");
set.add("Gene");
set.add("Elizabeth");
set = Collections.unmodifiableSet(set);
set.add("Clara");

}
}

When the program is run and the last add() operation is attempted on the read-only set, an
UnsupportedOperationException is thrown.

Thread-safe collections

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 22

http://hillside.net/patterns/DPBook/DPBook.html
http://hillside.net/patterns/DPBook/DPBook.html

The key difference between the historical collection classes and the new implementations
within the Collections Framework is the new classes are not thread-safe. The designers took
this approach to allow you to use synchronization only when you need it, making everything
work much faster. If, however, you are using a collection in a multi-threaded environment,
where multiple threads can modify the collection simultaneously, the modifications need to
be synchronized. The Collections class provides for the ability to wrap existing collections
into synchronized ones with another set of six methods:

* Collection synchronizedCollection(Collection collection)
* List synchronizedList(List list)
* Map synchronizedMap(Map map)
* Set synchronizedSet(Set set)
* SortedMap synchronizedSortedMap(SortedMap map)
* SortedSet synchronizedSortedSet(SortedSet set)

Synchronize the collection immediately after creating it. You also must not retain a reference
to the original collection, or else you can access the collection unsynchronized. The simplest
way to make sure you don't retain a reference is never to create one:

Set set = Collection.synchronizedSet(new HashSet());

Making a collection unmodifiable also makes a collection thread-safe, as the collection can't
be modified. This avoids the synchronization overhead.

Singleton collections
The Collections class provides for the ability to create single element sets fairly easily.
Instead of having to create the Set and fill it in in separate steps, you can do it all at once.
The resulting Set is immutable.

Set set = Collection.singleton("Hello");

The Java 2 SDK, Standard Edition, version 1.3 adds the ability to create singleton lists and
maps, too:

* List singletonList(Object element)
* Map singletonMap(Object key, Object value)

Multiple copy collections
If you need an immutable list with multiple copies of the same element, the nCopies(int
n, Object element) method of the Collections class returns just such the List:

List fullOfNullList = Collection.nCopies(10, null);

By itself, that doesn't seem too useful. However, you can then make the list modifiable by
passing it along to another list:

List anotherList = new ArrayList(fullOfNullList);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 23

This now creates a 10-element ArrayList, where each element is null. You can now
modify each element at will, as it becomes appropriate.

Empty collections
The Collections class also provides constants for empty collections:

* List EMPTY_LIST
* Set EMPTY_SET

The Java 2 SDK, Standard Edition, version 1.3 has a predefined empty map constant:

* Map EMPTY_MAP

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 24

Section 5. Historical collection classes

Introduction
While this tutorial is about the new Collections Framework of the Java 2 SDK, there are times
when you still need to use some of the original collections capabilities. This section reviews
some of the capabilities of working with arrays, vectors, hashtables, enumerations, and other
historical capabilities.

Arrays
One learns about arrays fairly early on when learning the Java programming language.
Arrays are defined to be fixed-size collections of the same datatype. They are the only
collection that supports storing primitive datatypes. Everything else, including arrays, can
store objects. When creating an array, you specify both the number and type of object you
wish to store. And, over the life of the array, it can neither grow nor store a different type
(unless it extends the first type).

To find out the size of an array, you ask its single public instance variable, length, as in
array.length.

To access a specific element, either for setting or getting, you place the integer argument
within square brackets ([int]), either before or after the array reference variable. The
integer index is zero-based, and accessing beyond either end of the array will throw an
ArrayIndexOutOfBoundsException at run time. If, however, you use a long variable to
access an array index, you'll get a compiler-time error.

Arrays are full-fledged subclasses of java.lang.Object. They can be used with the
various Java constructs except for an object:

Object obj = new int[5];
if (obj instanceof int[]) {

// true
}
if (obj.getClass().isArray()) {

// true
}

When created, arrays are automatically initialized, either to false for a boolean array ,
null for an Object array, or the numerical equivalent of 0 for everything else.

To make a copy of an array, perhaps to make it larger, you use the arraycopy() method of
System. You need to preallocate the space in the destination array.

System.arraycopy(Object sourceArray, int
sourceStartPosition, Object destinationArray, int
destinationStartPosition, int length)

Vector and Stack classes
A Vector is a historical collection class that acts like a growable array, but can store

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 25

heterogeneous data elements. With the Java 2 SDK, version 2, the Vector class has been
retrofitted into the Collections Framework hierarchy to implement the List interface.
However, if you are using the new framework, you should use ArrayList, instead.

When transitioning from Vector to ArrayList, one key difference is that the arguments
have been reversed to positionally change an element's value:

* From original Vector class void setElementAt(Object element, int
index)

* From List interface void set(int index, Object element)

The Stack class extends Vector to implement a standard last-in-first-out (LIFO) stack,
with push() and pop() methods. Be careful, though. Because the Stack class extends the
Vector class, you can still access or modify a Stack with the inherited Vector methods.

Enumeration interface
The Enumeration interface allows you to iterate through all the elements of a collection. In
the Collections Framework, this interface has been superceded by the Iterator interface.
However, not all libraries support the newer interface, so you may find yourself using
Enumeration from time to time.

Iterating through an Enumeration is similar to iterating through an Iterator, though some
people like the method names better with Iterator. However, there is no removal support
with Enumeration.

Enumeration enum = ...;
while (enum.hasNextElement()) {

Object element = iterator.nextElement();
// process element

}

Dictionary, Hashtable, and Properties classes
The Dictionary class is completely full of abstract methods. In other words, it should have
been an interface. It forms the basis for key-value pair collections in the historical collection
classes, with its replacement being Map in the new framework. Hashtable and
Properties are the two specific implementations of Dictionary available.

The Hashtable implementation is a generic dictionary that permits storing any object as its
key or value (besides null). With the Java 2 SDK, version 1.2, the class has been reworked
into the Collections Framework to implement the Map interface. So you can use the original
Hashtable methods or the newer Map methods. If you need a synchronized Map, using
Hashtable is slightly faster than using a synchronized HashMap.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 26

The Properties implementation is a specialized Hashtable for working with text strings.
While you have to cast values retrieved from a Hashtable to your desired class, the
Properties class allows you to get text values without casting. The class also supports
loading and saving property settings from an input stream or to an output stream. The most
commonly used set of properties is the system properties list, retrieved by
System.getProperties().

BitSet class
A BitSet represents an alternate representation of a set. Given a finite number of n objects,
you can associate a unique integer with each object. Then each possible subset of the
objects corresponds to an n-bit vector, with each bit "on" or "off" depending on whether the
object is in the subset. For small values of n, a bit vector might be an extremely compact
representation. However, for large values of n, an actual bit vector might be inefficient, when
most of the bits are off.

There is no replacement to BitSet in the new framework.

Exercise
* Exercise 1. How to use a HashSet for a sparse bit set on page 36

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 27

Section 6. Algorithm support

Introduction
The Collections and Arrays classes, available as part of the Collections Framework,
provide support for various algorithms with the collection classes, both new and old. The
different operations, starting with sorting and searching, are described next.

Sorting arrays
While the TreeSet and TreeMap classes offer sorted version of sets and maps, there is no
sorted List collection implementation. Also, prior to the collections framework, there was no
built-in support for sorting arrays. As part of the framework, you get both support for sorting
a List, as well as support for sorting arrays of anything, including primitives. With any kind
of sorting, all items must be comparable to each other (mutually comparable). If they are not,
a ClassCastException will be thrown.

Sorting of a List is done with one of two sort() methods in the Collections class. If the
element type implements Comparable then you would use the sort(List list) version.
Otherwise, you would need to provide a Comparator and use sort(List list,
Comparator comparator). Both versions are destructive to the List and guarantee O(n
log 2 n) performance (or better), including when sorting a LinkedList, using a merge sort
variation.

Sorting of arrays is done with one of eighteen different methods. There are two methods for
sorting each of the seven primitive types (except boolean), one for sorting the whole array
and one for sorting part of the array. The remaining four are for sorting object arrays
Object[]).

To sort primitive arrays, simply call Arrays.sort() with your array as the argument and let
the compiler determine which of the following methods to pick:

* void sort(byte array[])
* void sort(byte array[], int fromIndex, int toIndex)
* void sort(short array[])
* void sort(short array[], int fromIndex, int toIndex)
* void sort(int array[])
* void sort(int array[], int fromIndex, int toIndex)
* void sort(long array[])
* void sort(long array[], int fromIndex, int toIndex)
* void sort(float array[])
* void sort(float array[], int fromIndex, int toIndex)
* void sort(double array[])
* void sort(double array[], int fromIndex, int toIndex)
* void sort(char array[])
* void sort(char array[], int fromIndex, int toIndex)

The sorting of object arrays is a little more involved, as the compiler doesn't check everything
for you. If the object in the array implements Comparable, then you can just sort the array
directly, in whole or in part. Otherwise, you must provide a Comparator to do the sorting for
you. You can also provide a Comparator implementation if you don't like the default

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 28

ordering.

* void sort(Object array[])
* void sort(Object array[], int fromIndex, int toIndex)
* void sort(Object array[], Comparator comparator)
* void sort(Object array[], int fromIndex, int toIndex, Comparator

comparator)

Searching
Besides sorting, the Collections and Arrays classes provide mechanisms to search a
List or array, as well as to find the minimum and maximum values within a Collection.

While you can use the contains() method of List to find if an element is part of the list, it
assumes an unsorted list. If you've previously sorted the List, using
Collections.sort(), then you can do a much quicker binary search using one of the two
overridden binarySearch() methods. If the objects in the List implement Comparable,
then you don't need to provide a Comparator. Otherwise, you must provide a Comparator.
In addition, if you sorted with a Comparator, you must use the same Comparator when
binary searching.

* public static int binarySearch(List list, Object key)
* public static int binarySearch(List list, Object key, Comparator

comparator)

If the List to search subclasses the AbstractSequentialList class (like LinkedList),
then a sequential search is actually done.

Array searching works the same way. After using one of the Arrays.sort() methods, you
can take the resulting array and search for an element. There are seven overridden varieties
of binarySearch() to search for a primitive (all but boolean), and two to search an
Object array, both with and without a Comparator.

If the original List or array is unsorted, the result is non-deterministic.

Besides searching for specific elements within a List, you can search for extreme elements
within any Collection: the minimum and maximum. If you know your collection is already
sorted, just get the first or last element. However, for unsorted collections, you can use one
of the min() or max() methods of Collections. If the object in the collection doesn't
implement Comparable, then you must provide a Comparator.

* Object max(Collection collection)
* Object max(Collection collection, Comparator comparator)
* Object min(Collection collection)
* Object min(Collection collection, Comparator comparator)

Checking equality
While the MessageDigest class always provided an isEqual() method to compare two
byte arrays, it never felt right to use it to compare byte arrays unless they were from

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 29

message digests. Now, with the help of the Arrays class, you can check for equality of any
array of primitive or object type. Two arrays are equal if they contain the same elements in
the same order. Checking for equality with arrays of objects relies on the equals() method
of each object to check for equality.

byte array1[] = ...;
byte array2[] = ...;
if (Arrays.equals(array1, array2) {

// They're equal
}

Manipulating elements
The Collections and Arrays classes offer several ways of manipulating the elements
within a List or array. There are no additional ways to manipulate the other key framework
interfaces (Set and Map).

With a List, the Collections class lets you replace every element with a single element,
copy an entire list to another, reverse all the elements, or shuffle them around. When copying
from one list to another, if the destination list is larger, the remaining elements are
untouched.

* void fill(List list, Object element)
* void copy(List source, List destination)
* void reverse(List list)
* void shuffle(List list)
* void shuffle(List list, Random random)

The Arrays class allows you to replace an entire array or part of an array with one element
via eighteen overridden versions of the fill() method. All the methods are of the form
fill(array, element) or fill(array, fromIndex, toIndex, element).

Big-O notation
Performance of sorting and searching operations with collections of size n is measured using
Big-O notation. The notation describes the complexity of the algorithm in relation to the
maximum time in which an algorithm operates, for large values of n. For instance, if you
iterate through an entire collection to find an element, the Big-O notation is referred to as
O(n), meaning that as n increases, time to find an element in a collection of size n increases
linearly. This demonstrates that Big-O notation assumes worst case performance. It is
always possible that performance is quicker.

The following table shows the Big-O values for different operations, with 65,536 as the value
for n. In addition, the operation count shows that if you are going to perform multiple search
operations on a collection, it is faster to do a quick sort on the collection, prior to searching,
versus doing a linear search each time. (And, one should avoid bubble sorting, unless n is
really small!)

Description Big-O # Operations Example

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 30

Constant O(1) 1 Hash table lookup
(ideal)

Logarithmic O(log base 2 of n) 16 Binary search on
sorted collection

Linear O(n) 65,536 Linear search
Linear-logarithmic O(n x log base 2 of

n)
1,048,576 Quick sort

Quadratic O(n x n) 4,294,967,296 Bubble sort

Legend: n = 65536

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 31

Section 7. Usage issues

Introduction
The Collections Framework was designed such that the new framework classes and the
historical data structure classes can interoperate. While it is good if you can have all your
new code use the new framework, sometimes you can't. The framework provides much
support for intermixing the two sets of collections. In addition, you can develop with a subset
of the capabilities with JDK 1.1.

Converting from historical collections to new collections
There are convenience methods for converting from many of the original collection classes
and interfaces to the newer framework classes and interfaces. They serve as bridges when
you need a new collection but have a historical collection. You can go from an array or
Vector to a List, a Hashtable to a Map, or an Enumeration to any Collection.

For going from any array to a List, you use the asList(Object array[]) method of the
Arrays class. Changes to the List pass through to the array, but you cannot adjust the
size of the array.

String names[] = {"Bernadine",
"Elizabeth", "Gene", "Clara"};

List list = Arrays.asList(names);

Because the original Vector and Hashtable classes have been retrofitted into the new
framework, as a List and Map respectively, there is no work to treat either of these historical
collections as part of the new framework. Treating a Vector as a List automatically carries
to its subclass Stack. Treating a Hashtable as a Map automatically carries to its subclass
Properties.

Moving an Enumeration to something in the new framework requires a little more work, as
nothing takes an Enumeration in its constructor. So, to convert an Enumeration, you
create some implementation class in the new framework and add each element of the
enumeration.

Enumeration enumeration = ...;
Collection collection = new LinkedList();
while (e.hasMoreElements()) {

collection.add(e.nextElement());
}
// Operate on collection

Converting from new collections to historical collections
In addition to supporting the use of the old collection classes within the new Collections
Framework, there is also support for using the new framework and still using libraries that
only support the original collections. You can easily convert from Collection to array,
Vector, or Enumeration, as well as from Map to Hashtable.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 32

There are two ways to go from Collection to array, depending upon the type of array you
need. The simplest way involves going to an Object array. In addition, you can also convert
the collection into any other array of objects. However, you cannot directly convert the
collection into an array of primitives, as collections must hold objects.

To go from a collection to an Object[], you use the toArray() method of Collection:

Collection collection = ...;
Object array[] = collection.toArray();

The toArray() method is overridden to accept an array for placing the elements of the
collection: toArray(Object array[]). The datatype of the argument determines the
type of array used to store the collection and returned by the method. If the array isn't large
enough, a new array of the appropriate type will be created.

Collection collection = ...;
int size = collection.size();
Integer array[] = collection.toArray(new Integer[size]);

To go from Collection to Vector, the Vector class now includes a constructor that
accepts a Collection. As with all these conversions, if the element in the original
conversion is mutable, then no matter from where it is retrieved and modified, it's changed
everywhere.

Dimension dims[] = {new Dimension (0,0),
new Dimension (0,0)};

List list = Arrays.asList(dims);
Vector v = new Vector(list);
Dimension d = (Dimension)v.get(1);
d.width = 12;

Going from Collection to Enumeration is much easier than going from Enumeration to
Collection. The Collections class includes a static method to do the conversion for
you:

Collection collection = ...;
Enumeration enum = Collections.enumeration(collection);

The conversion from Map to Hashtable is similar to the conversion from Collection to
Vector: just pass the new framework class to the constructor. After the conversion,
changing the value for the key in one does not alter the value for the key in the other.

Map map = ...;
Hashtable hashtable = new Hashtable(map);

Working with the Collections Framework support in JDK
1.1
If you are still using JDK 1.1, you can start taking advantage of the Collections Framework
today. Sun Microsystems provides a subset of the collections API for use with JDK 1.1. The
interfaces and classes of the framework have been moved from the java.lang and
java.util package to the non-core com.sun.java.util.collections package. This

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 33

http://java.sun.com/beans/infobus/index.html#COLLECTIONS
http://java.sun.com/beans/infobus/index.html#COLLECTIONS
http://java.sun.com/beans/infobus/index.html#COLLECTIONS
http://java.sun.com/beans/infobus/index.html#COLLECTIONS
http://java.sun.com/beans/infobus/index.html#COLLECTIONS

is not a complete set of classes changed to support the framework, but only copies of those
introduced. Basically, that means that none of the system classes are sortable by default;
you must provide your own Comparator.

The following table lists the classes available in the Collections Framework release for JDK
1.1. In some cases, there will be two different implementations of the same class, like with
Vector, as the 1.2 framework version implements List and the core 1.1 version doesn't.

AbstractCollection AbstractList

AbstractMap AbstractSequentialList

AbstractSet ArrayList

Arrays Collection

Collections Comparable

Comparator ConcurrentModificationException

HashMap HashSet

Hashtable Iterator

LinkedList List

ListIterator Map

NoSuchElementException Random

Set SortedMap

SortedSet TreeMap

TreeSet UnsupportedOperationException

Vector

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 34

Section 8. Alternative collections

Introduction
Because the Collections Framework was not available prior to the introduction of the Java 2
platform, several alternative collection libraries became available. Two such libraries are
Doug Lea's Collections Package and ObjectSpace's JGL.

Doug Lea's collections package
The collections package from Doug Lea (author of "Concurrent Programming in Java") was
first available in October 1995 and last updated in April 1997. It probably offered the first
publicly available collections library. While no longer supported, the library shows the
complexity added to the class hierarchy when you try to provide updateable and immutable
collections, without optional methods in interfaces or wrapper implementations. While a good
alternative at the time, its use is no longer recommended. (Doug also helped author some of
the Collections Framework.)

ObjectSpace's JGL
In addition to Doug Lea's collections library, the Generic Collection Library for Java (JGL)
from ObjectSpace was an early collection library available for the Java platform. (If you are
curious of how the library name maps to the acronym, it doesn't. The name of the first
version of the library infringed on Sun's Java trademark. ObjectSpace changed the name, but
the original acronym stuck.) Following the design patterns of the Standard Template Library
(STL) for C++, the library provides algorithmic support, in addition to a data structure library.
While the JGL is a good alternative collection framework, it didn't meet the design goals of
the Collections Framework team: "The main design goal was to produce an API that was
reasonably small, both in size and, more importantly, in conceptual weight." With that in
mind, the team came up with the Collections Framework.

While not adopted by Sun Microsystems, the JGL has been included with many IDE tools.
Due to its early availability, the JGL is available to well over 100,000 developers.

For a comparison of JGL versus the Collections Framework, see The battle of the container
frameworks: which should you use? article in JavaWorld.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 35

http://gee.cs.oswego.edu/dl/classes/collections/index.html
http://gee.cs.oswego.edu/dl/classes/collections/index.html
http://www.amazon.com/exec/obidos/ASIN/0201310090/o/qid=986911625/sr=2-1/107-6256998-1065329
http://www.amazon.com/exec/obidos/ASIN/0201310090/o/qid=986911625/sr=2-1/107-6256998-1065329
http://www.amazon.com/exec/obidos/ASIN/0201310090/o/qid=986911625/sr=2-1/107-6256998-1065329
http://www.amazon.com/exec/obidos/ASIN/0201310090/o/qid=986911625/sr=2-1/107-6256998-1065329
http://www.objectspace.com/products/voyager/libraries.asp
http://www.objectspace.com/products/voyager/libraries.asp
http://www.objectspace.com/products/voyager/libraries.asp
http://www.objectspace.com/products/voyager/libraries.asp
http://www.objectspace.com/products/voyager/libraries.asp
http://java.sun.com/products/jdk/1.2/docs/guide/collections/overview.html
http://java.sun.com/products/jdk/1.2/docs/guide/collections/overview.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html

Section 9. Exercises

About the exercises
These exercises are designed to provide help according to your needs. For example, you
might simply complete the exercise given the information and the task list in the exercise
body; you might want a few hints; or you may want a step-by-step guide to successfully
complete a particular exercise. You can use as much or as little help as you need per
exercise. Moreover, because complete solutions are also provided, you can skip a few
exercises and still be able to complete future exercises requiring the skipped ones.

Each exercise has a list of any prerequisite exercises, a list of skeleton code for you to start
with, links to necessary API pages, and a text description of the exercise goal. In addition,
there is help for each task and a solutions page with links to files that comprise a solution to
the exercise.

Exercise 1. How to use a HashSet for a sparse bit set
A sparse bitset is a large collection of boolean values where many of the values are off (or
false). For maintaining these sparsely populated sets, the BitSet class can be very
inefficient. Because the majority of the bits will be off, space will be occupied to store nothing.
For working with these sparse bitsets, you can create an alternate representation, backed
instead by a hashtable, or HashMap. Only those positions where a value is set are then
stored in the mapping.

To create a sparse bitset, subclass BitSet and override the necessary methods
(everything). The skeleton code should help you get started, so you can focus on the
set-oriented routines.

The following UML diagram shows you the BitSet operations:

For more information on the BitSet class, see BitSet class on page 27 .

Skeleton Code
* SparseBitSet.java
* Tester.java

Task 1: Either start with the skeleton code or create a SparseBitSet class. The skeleton

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 36

http://java.sun.com/products/jdk/1.2/docs/api/java/util/BitSet.html
exercises/BitSet/SparseBitSet.java
exercises/BitSet/Tester.java
exercises/BitSet/SparseBitSet.java
exercises/BitSet/SparseBitSet.java

provides a no-argument constructor only. Because the bitmap will be sparse, you shouldn't
provide a constructor that will preallocate any space, as BitMap does. Besides a
constructor, the skeleton defines the clear(), clone(), equals(), get(), hashCode(),
set(), size(), and toSting() method.

In the skeleton, the getBitSet() method returns the internal Set used to store the bits.
You should use this method as you complete the other methods in the subclass. The actual
HashSet used to store the bit values is created for you in the constructor.

Help for task 1: Shift click to save the file to your working directory.

Task 2: Working alphabetically, the first method to complete is the and(BitSet set)
method. This method performs a logical AND of the two bit sets. Only those bits in both sets
are in the resulting set. Complete the and() method to combine the internal Set with that of
the argument.

Help for task 2: The retainAll() method of Set() retains only the elements in this set
that are contained in the other set.

Task 3: The next method to complete is the andNot(BitSet set) method. Instead of
keeping bits present in both, the andNot() operation will remove bits from the current set
that are also in the set passed as an argument. This is sometimes called a logical NAND
operation.

Help for task 3: The removeAll() method of Set() removes the elements in this set
that are contained in the other set.

Task 4: Because the clear(), clone(), equals(), get(), and hashCode() methods
are defined in the skeleton code, the next method to complete is the length() method.
The length() method returns the logical size of the BitSet, which is defined to be the
position of the highest set bit, plus one. Thus, if bit 127 was set, the length would be 128 as
the bit counting starts at zero.

Help for task 4: The max() method of Collections() reports the highest value in a
collection. Make sure you check for an empty set, as an empty set reports zero, not one.

Task 5: The last easy method to complete is the or(BitSet set) method. This method
performs a logical OR operation of the two bit sets. Every bit set of either set is in the
resulting set.

Help for task 5: The addAll() method of Set() combines the elements of two sets.

Task 6: With the set(), size(), and toString() methods already defined for you, you're
left to complete the xor(BitSet set) method. This method performs a logical exclusive
or (XOR) operation. Only those bits on in one of the sets will be on in the resulting set.

Unlike the other operations, the solution is not just a single method call of Set.

Help for task 6: You need to find out what elements are in each set that are not in the other
set without altering the original sets. Once you have these two sets, combine them to create
the resulting set.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 37

http://java.sun.com/products/jdk/1.2/docs/api/java/util/BitSet.html#and(java.util.BitSet)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/BitSet.html#and(java.util.BitSet)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Set.html#retainAll(java.util.Collection)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Set.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/BitSet.html#andNot(java.util.BitSet)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/BitSet.html#andNot(java.util.BitSet)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Set.html#removeAll(java.util.Collection)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Set.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/BitSet.html#length()
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collections.html#max(java.util.Collection)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collections.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/BitSet.html#or(java.util.BitSet)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/BitSet.html#or(java.util.BitSet)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Set.html#addAll(java.util.Collection)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Set.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/BitSet.html#xor(java.util.BitSet)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/BitSet.html#xor(java.util.BitSet)

Task 7: Compile your program and run the Tester program to see what happens. The
Tester program creates a couple of sets and performs all the operations.

Help for task 7: Check your output to make sure the various set operations are correct.

Exercise 1. How to use a HashSet for a Sparse Bit Set:
Solution
The following Java source files represent a solution to this exercise.

* Solution/SparseBitSet.java
* Solution/Tester.java

Exercise 2. How to use a TreeSet to provide a sorted
JList
By default, the JList component displays its element list unsorted. With the help of the
TreeSet , you can make it sorted by providing your own implementation of the ListModel
interface for storing the data.

This exercise has you create just such an implementation.

If you aren't familiar with the Swing component set, don't worry. The Tester program
includes all the necessary code to create the user interface. You are only responsible for
finishing up the data model implementation and adding some action behind some of the
buttons in the user interface.

Skeleton Code
* SortedListModel.java
* Tester.java

Task 1: Either start with the skeleton code or create a SortedListModel class. The class
extends AbstractListModel .

Help for task 1: Shift click to save the file to your working directory.

Task 2: Create an instance variable of type SortedSet . Then, in the constructor create an
instance of type TreeSet and assign it to the variable.

Task 3: At a minimum, the AbstractListModel class requires the getSize() and
getElementAt() methods of the ListModel interface to be defined. Complete the stubs
such that they get the size and element from the set saved in the prior step.

Help for task 3: Use the size() method of Set to complete getSize().

Either iterate through the set to the appropriate position, or convert the set to an array using
the toArray() method of Set to complete getElementAt().

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 38

exercises/BitSet/Solution/SparseBitSet.java
exercises/BitSet/Solution/Tester.java
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/JList.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/TreeSet.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ListModel.html
exercises/JList/SortedListModel.java
exercises/JList/Tester.java
exercises/JList/SortedListModel.java
exercises/JList/SortedListModel.java
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/AbstractListModel.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/SortedSet.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/TreeSet.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/AbstractListModel.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ListModel.html#getSize()
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ListModel.html#getElementAt(int)
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ListModel.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Set.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Set.html

Task 4: Besides implementing the methods of ListModel , the SortedListModel class
provides several methods to access and alter the data model. Many of the methods are
already completed. The following UML diagram shows the complete set of operations.

Help for task 4: If you are using the skeleton code, there is no task to perform here.

Task 5: Two methods in the SortedListModel skeleton are left to complete:
firstElement() and lastElement(). These require the use of methods specific to the
SortedSet interface to complete.

Help for task 5: Use the first() method of SortedSet to find the first element.

Use the last() method of SortedSet to find the last element.

Task 6: In the Tester skeleton, the printAction() method needs to be completed. As
the name may imply, its purpose is to display a list of the elements in the JList. Use an
Iterator to display the elements in its data model. The data model is stored in the model
variable, which is of type SortedListModel.

Help for task 6: Use the iterator() method of SortedListModel to get an Iterator.

Task 7: Compile your program and run the Tester program to see what happens. You can
provide several values as command line arguments to initialize the contents. Try out several
buttons on the user interface to make sure the SortedListModel works.

Help for task 7:

java Tester One Two Three Four Five Six Seven Eight
Nine Ten

Make sure the elements in the JList are sorted.

Exercise 2. How to use a TreeSet to provide a sorted
JList: Solution
The following Java source files represent a solution to this exercise.

* Solution/SortedListModel.java
* Solution/Tester.java

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 39

http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ListModel.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/SortedSet.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/SortedSet.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/SortedSet.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Iterator.html
exercises/JList/Solution/SortedListModel.java
exercises/JList/Solution/Tester.java

Exercise 3. How to use an ArrayList with a JComboBox
If you've ever looked at the data model class for the JComboBox component of the
JFC/Swing component set, you may have noticed that the data model is backed by a
Vector . If, however, you don't need the synchronized access of a Vector (thus increasing
performance) or you prefer the new Collections Framework, you can create your own
implementation of the ComboBoxModel or MutableComboBoxModel interface for storing
the data in a List or more specifically in a ArrayList .

This exercise has you create just such an implementation.

If you aren't familiar with the Swing component set, don't worry. The Tester program
includes all the necessary code to create the user interface. You are only responsible for
finishing up the data model implementation.

Skeleton Code
* ArrayListComboBoxModel.java
* Tester.java

Task 1: Either start with the skeleton code or create an ArrayListComboBoxModel class.
The class extends AbstractListModel and implements MutableComboBoxModel .

Help for task 1: Shift click to save the file to your working directory.

Task 2: Create a variable of type List. Refer the List argument in the constructor to your
variable.

Task 3: The AbstractListModel class leaves the getSize() and getElementAt()
methods of the ListModel interface to be defined. Complete the stubs such that they get
the size and element from the list saved in the prior step.

Help for task 3: Use the size() method of List to complete getSize().

Use the get(int position) method of List to complete getElementAt().

Task 4: By stating that the ArrayListComboBoxModel class implements the
MutableComboBoxModel interface, you are saying you'll provide implementations for the
methods of both the MutableComboBoxModel and ComboBoxModel interfaces, as the
former extends the latter. The getSelectedItem() and setSelectedItem() methods
of the ComboBoxModel interface are already defined for you.

Task 5: The MutableComboBoxModel interface, defines four methods:
addElement(Object element) , insertElementAt(Object element, int
position) , removeElement(Object element) , and removeElementAt(int
position) . Complete the stubs such that they alter the list saved in a prior step.

Help for task 5: Use the add(Object element) method of List to insert an element at
the end.

Use the add(Object element, int position) method of List to insert an element
at a designated position.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 40

http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/JComboBox.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Vector.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ComboBoxModel.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/List.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/ArrayList.html
exercises/ComboBox/ArrayListComboBoxModel.java
exercises/ComboBox/Tester.java
exercises/ComboBox/ArrayListComboBoxModel.java
exercises/ComboBox/ArrayListComboBoxModel.java
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/AbstractListModel.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/AbstractListModel.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ListModel.html#getSize()
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ListModel.html#getElementAt(int)
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ListModel.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/List.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/List.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ComboBoxModel.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ComboBoxModel.html#getSelectedItem()
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ComboBoxModel.html#setSelectedItem(java.lang.Object)
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/ComboBoxModel.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html#addElement(java.lang.Object)
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html#addElement(java.lang.Object)
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html#insertElementAt(java.lang.Object, int)
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html#insertElementAt(java.lang.Object, int)
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html#insertElementAt(java.lang.Object, int)
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html#insertElementAt(java.lang.Object, int)
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html#removeElement(java.lang.Object)
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html#removeElement(java.lang.Object)
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html#removeElementAt(int)
http://java.sun.com/products/jdk/1.2/docs/api/javax/swing/MutableComboBoxModel.html#removeElementAt(int)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/List.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/List.html

Use the remove(Object element) method of List to remove the first instance of an
element.

Use the remove(int position) method of List to remove an element at a designated
position.

Task 6: Compile your program and run the Tester program to see what happens. Provide
several names as command line arguments. The Tester program tests your new data
model class by adding and removing elements from the model.

Help for task 6:

java Tester Jim Joe Mary

Check your output to make sure that Jim, Joe, and Mary are added to the names you
provided.

Exercise 3. How to use an ArrayList with a JComboBox:
Solution
The following Java source files represent a solution to this exercise.

* Solution/ArrayListComboBoxModel.java
* Solution/Tester.java

Exercise 4. How to use a map to count words
This program enhances the program from Map interface on page 14 to read from a URL,
instead of just counting words from the command line.

If you aren't familiar with the Swing component set, don't worry. The Tester program
includes all the necessary code to create the user interface. You are only responsible for
counting the words and formatting the output. Even the source code to read from the URL is
provided.

Skeleton Code
* CaseInsensitiveComparator.java
* Tester.java
* WordCount.java

Task 1: Either start with the skeleton code or create a WordCount class.

Help for task 1: Shift click to save the file to your working directory.

If you don't start from the skeleton code, you'll have to read the URL yourself and parse the
contents with a StringTokenizer .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 41

http://java.sun.com/products/jdk/1.2/docs/api/java/util/List.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/List.html
exercises/ComboBox/Solution/ArrayListComboBoxModel.java
exercises/ComboBox/Solution/Tester.java
exercises/WordCount/CaseInsensitiveComparator.java
exercises/WordCount/Tester.java
exercises/WordCount/WordCount.java
exercises/WordCount/WordCount.java
exercises/WordCount/WordCount.java
http://java.sun.com/products/jdk/1.2/docs/api/java/util/StringTokenizer.html

Task 2: Create an instance variable of type Map and assign it to a new HashMap . In the
getMap() method return the map created. In the clear() method, empty out the defined
map.

Help for task 2: Use the clear() method of Map to empty it out.

Task 3: Complete the addWords() method to count each word returned by the
StringTokenizer . The program already separates each line in the URL into individual
words.

Help for task 3: The value for the key (word) is the current frequency. If the word is not
found, then it is not in the map yet and should be added with a value of one. Otherwise, add
one to the existing frequency.

Refer back to the map usage example in Map interface on page 14 .

Feel free to try a different set of delimiters with the StringTokenizer.

Task 4: The Tester program has a JTextArea to display the results of the counting. The
program displays the String returned by the private convertMap() method in the
JTextArea. It is your job to format the output nicely, as the toString() of AbstractMap
displays everything on one line. Start off with the skeleton code for
CaseInsensitiveComparator so you can sort the output in a case-insensitive manner.
The implementation will be identical to the comparator interface described in Sorting on page
17 .

Help for task 4: Shift click to save the file to your working directory.

Either implement compare() yourself, or copy it from the course notes.

Task 5: Now that you have a case-insensitive Comparator , use it to create a TreeMap
full of the original map contents. That way, the output can be displayed sorted.

Help for task 5: Getting the original Map sorted with the new Comparator is a two-step
process. In the TreeMap constructor, specify the Comparator. Then, put all the original
map entries in the TreeMap with the putAll() method.

Task 6: After getting an Iterator of all the keys, display one key-value pair per line, using
the predefined PrintWriter to format the output. It is backed by a StringBuffer and will
be automatically returned.

Help for task 6: First get the entry set with the entrySet() method.

Then, get its Iterator. Each element is a Map.Entry

Task 7: Compile your program and run the Tester program to see what happens. You
specify the URL to read in the JTextField. When you press Enter, the URL is read and the
words are added to the map. Once done reading, the JTextArea is updated. If you want to
clear out the map, press the Clear button.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 42

http://java.sun.com/products/jdk/1.2/docs/api/java/util/Map.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/HashMap.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Map.html#clear()
http://java.sun.com/products/jdk/1.2/docs/api/java/util/StringTokenizer.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/AbstractMap.html#toString()
http://java.sun.com/products/jdk/1.2/docs/api/java/util/AbstractMap.html
exercises/WordCount/CaseInsensitiveComparator.java
exercises/WordCount/CaseInsensitiveComparator.java
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Comparator.html#compare(java.lang.Object, java.lang.Object)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Comparator.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/TreeMap.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Map.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Map.html#putAll(java.util.Map)
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Iterator.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Map.html#entrySet()
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Map.Entry.html

Exercise 4. How to use a map to count words: Solution
The following Java source files represent a solution to this exercise.

* Solution/CaseInsensitiveComparator.java
* Solution/Tester.java
* Solution/WordCount.java

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 43

exercises/WordCount/Solution/CaseInsensitiveComparator.java
exercises/WordCount/Solution/Tester.java
exercises/WordCount/Solution/WordCount.java

Section 10. Wrapup

In summary
The Collections Framework provides a well-designed set of interfaces, implementations, and
algorithms for representing and manipulating groups of elements. Understanding all the
capabilities of this framework reduces the effort required to design and implement a
comparable set of APIs, as was necessary prior to their introduction. Now that you have
completed this tutorial, you can effectively manage groups of data elements.

Further reading and references
The following resources should help in your usage and understanding of the Collections
Framework:

* Java language essentials tutorial on developerWorks
* "Porting C++ to Java" on developerWorks, a step-by-step approach to porting C++ to

Java effectively
* "How to Build Data Structures in Java" , a JDC article from prior to the existence of the

Collections Framework
* "Design Patterns" by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (

The Gang of Four)
* Collections Framework Support for JDK 1.1
* Doug Lea's Collections Package
* Generic Collection Library for Java , JGL from ObjectSpace
* "The battle of the container frameworks: which should you use?" , JavaWorld article

from January 1999
* Sun's Collections Framework home page

Feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

For questions about the content of this tutorial, contact the author John Zukowski (
jaz@jguru.com)

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics,
and PDF files. Our ability to generate multiple text and binary formats from a single source
file illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java Collections Framework Page 44

http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/FCCCC34D4124A8C086256997006B7146?OpenDocument
http://www-106.ibm.com/developerworks/library/portingc/index.html
http://www-106.ibm.com/developerworks/library/portingc/index.html
http://www-106.ibm.com/developerworks/library/portingc/index.html
http://www-106.ibm.com/developerworks/library/portingc/index.html
http://developer.java.sun.com/developer/technicalArticles//DataTypes/DataStructures/
http://developer.java.sun.com/developer/technicalArticles//DataTypes/DataStructures/
http://developer.java.sun.com/developer/technicalArticles//DataTypes/DataStructures/
http://developer.java.sun.com/developer/technicalArticles//DataTypes/DataStructures/
http://developer.java.sun.com/developer/technicalArticles//DataTypes/DataStructures/
http://developer.java.sun.com/developer/technicalArticles//DataTypes/DataStructures/
http://developer.java.sun.com/developer/technicalArticles//DataTypes/DataStructures/
http://hillside.net/patterns/DPBook/DPBook.html
http://hillside.net/patterns/DPBook/DPBook.html
http://hillside.net/patterns/DPBook/GOF.html
http://hillside.net/patterns/DPBook/GOF.html
http://hillside.net/patterns/DPBook/GOF.html
http://hillside.net/patterns/DPBook/GOF.html
http://java.sun.com/beans/infobus/index.html#COLLECTIONS
http://java.sun.com/beans/infobus/index.html#COLLECTIONS
http://java.sun.com/beans/infobus/index.html#COLLECTIONS
http://java.sun.com/beans/infobus/index.html#COLLECTIONS
http://java.sun.com/beans/infobus/index.html#COLLECTIONS
http://java.sun.com/beans/infobus/index.html#COLLECTIONS
http://gee.cs.oswego.edu/dl/classes/collections/index.html
http://gee.cs.oswego.edu/dl/classes/collections/index.html
http://gee.cs.oswego.edu/dl/classes/collections/index.html
http://gee.cs.oswego.edu/dl/classes/collections/index.html
http://www.objectspace.com/products/voyager/libraries.asp
http://www.objectspace.com/products/voyager/libraries.asp
http://www.objectspace.com/products/voyager/libraries.asp
http://www.objectspace.com/products/voyager/libraries.asp
http://www.objectspace.com/products/voyager/libraries.asp
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-jglvscoll.html
http://java.sun.com/products/jdk/1.2/docs/guide/collections/index.html
http://java.sun.com/products/jdk/1.2/docs/guide/collections/index.html
http://java.sun.com/products/jdk/1.2/docs/guide/collections/index.html
http://java.sun.com/products/jdk/1.2/docs/guide/collections/index.html
http://java.sun.com/products/jdk/1.2/docs/guide/collections/index.html
mailto:jaz@jguru.com

